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ABSTRACT 

Various control algorithms have been developed for fleets 
of autonomous vehicles.  Many of the successful control 
algorithms in practice are behavior-based control or nonlinear 
control algorithms, which makes analyzing their stability 
difficult.  At the same time, many system theoretic approaches 
for controlling a fleet of vehicles have also been developed.  
These approaches usually use very simple vehicle models such 
as particles or point-mass systems and have only one coordinate 
system which allows stability to be proven.  Since most of the 
practical vehicle models are six-degree-of-freedom systems 
defined relative to a body-fixed coordinate system, it is difficult 
to apply these algorithms in practice.   

In this paper, we consider a formation regulation problem 
as opposed to a formation control problem.  In a formation 
control problem, convergence of a formation from random 
positions and orientations is considered, and it may need a 
scheme to integrate multiple moving coordinates.  On the 
contrary, in a formation regulation problem, it is not necessary 
since small perturbations from the nominal condition, in which 
the vehicles are in formation, are considered.  A common origin 
is also not necessary if the relative distance to neighbors or a 
leader is used for regulation.  Under these circumstances, the 
system theoretic control algorithms are applicable to a 
formation regulation problem where the vehicle models have 
six degrees of freedom.  

We will use a realistic six-degree-of-freedom model and 
investigate stability of a fleet using results from decentralized 
control theory.  We will show that the leader-follower control 
algorithm does not have any unstable fixed modes if the 
followers are able to measure distance to the leader.  We also 
show that the leader-follower control algorithm has fixed 
modes at the origin, indicating that the formation is marginally 
stable, when the relative distance measurements are not 
available.   

Multi-vehicle simulations are performed using a hybrid 
leader-follower control algorithm where each vehicle is given a 

desired trajectory to follow and adjusts its velocity to maintain 
a prescribed distance to the leader.  Each vehicle is modeled as 
a three-degree-of-freedom system to investigate the vehicle’s 
motion in a horizontal plane.  The examples show efficacy of 
the analysis. 
 
Keywords: Formation, Formation Control, Multiple vehicles, 
Leader-Follower Algorithm, Autonomous Underwater Vehicles  

 
 

I. INTRODUCTION 
Various control algorithms have been developed for fleets 

of autonomous vehicles.  The general idea is to use relatively 
inexpensive vehicles to cooperatively solve a difficult problem.  
This idea is best illustrated in a mine search problem.  In a mine 
search problem, a large area must be searched quickly and 
carefully before humans can enter the area safely.  The cost of 
each vehicle must be low because there is always some risk of 
losing the search vehicles.   

Many of the early successful control algorithms in practice 
are behavior-based control.  For example Balch and Arkin 
implemented a behavior-based controller on multiple mobile 
robots to move in formation [1].  In their work, several different 
formation shapes and algorithms are evaluated.  Fredslund and 
Mataric used mobile robots equipped with a camera to move in 
formation and avoid obstacles [5].   

Another common approach is a nonlinear control 
algorithm.  In [7], an artificial potential functions were used for 
formation control.  The algorithm was successfully 
implemented for the control of underwater gliders [4].  This 
approach has an advantage over the behavior-based control 
because stability can be directly proven by Lyapunov’s method 
[7].  Ihle, Skjetne and Fossen introduced and implemented a 
nonlinear control algorithm for a fleet of ships [6].  In this 
algorithm, a leader is absent, and formation flying is 
accomplished by maintaining desired distance to a point called 
the formation reference point (FRP).     

 1 Copyright © 2005 by ASME 
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At the same time, many system theoretic approaches for 
controlling fleets of vehicles have also been developed.  These 
approaches usually use simple vehicle models such as particles 
or point-mass systems and have only one coordinate system.  
Stability of a system can be proven using the results from graph 
theory and decentralized control theory [9].  Although this 
approach gives great insight to a general multi-vehicle problem, 
it is difficult to apply these algorithms in practice since most of 
the practical vehicle models are nonlinear six-degree-of-
freedom (DOF) systems defined relative to a body-fixed 
coordinate system.   

In this paper, we consider a formation regulation problem 
as opposed to a formation control problem.  In a formation 
control problem, convergence of a formation from random 
positions and orientations is considered, and it may need a 
scheme to integrate multiple moving coordinates.  On the other 
hand, in a formation regulation problem, small perturbations 
from the nominal condition, in which the vehicles are in 
formation, are considered.  Under these circumstances, the 
system theoretic control approaches are applicable to a multiple 
vehicle problem where the vehicle models have six degrees of 
freedom.  

This paper is organized as follows.  In section II, a 6DOF 
vehicle model and a vehicle coupling equation are developed.  
In section III, we will show that the leader-follower control 
algorithm does not have any unstable fixed modes if the 
followers are able to measure a distance to the leader.  We also 
show that the leader-follower control algorithm has fixed 
modes at the origin, indicating that the formation is marginally 
stable, when the relative distance measurements are not 
available.  In section IV, the developed design and analysis 
methods are applied to a hybrid leader-follower control 
algorithm as an example.  Each vehicle is modeled as a 
nonlinear 3DOF system to investigate the vehicle’s motion on a 
horizontal plane.  Conclusions are given in section V. 

 
 

II. VEHICLE MODEL FORMULATION 
We will model our vehicle as a rigid body.  Its dynamics 

are expressed by 6DOF equations of motion.     
Consider a general nonlinear 6DOF model, 
  

( )µ,ξfξ =  (1) 
 
where ξ is the state vector, and µ is the control input vector.  
Since it has six degrees of freedom, the state vector is usually 
given as ξ = [u v w p q r]T.  The right hand side of Eq. (1) 
usually consists of damping terms, Corioli’s forces, control 
forces, etc. 
It will be convenient to define a translational velocity vector, xv 
and a rotational velocity vector, xr as 

 
[ ]wvuxv =

T and T[ rqpxr = ] . (2) 
 
Equation (1) is usually defined in body-fixed coordinates, 
which move with the vehicle.  Inertial position and orientation 
of the vehicle are found through coordinate transformations.  
The inertial position is found by integrating Eq. (3), 
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where c(.) = cos(.) and s(.) = sin(.). 
and the angles of the vehicle are obtained from 
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where t(.) = tan(.). 
 
Stabilization of a fleet of vehicles is studied by Roy, Saberi, 
and Herlungston [9].  They give necessary and sufficient 
conditions for formation stabilization of a fleet for a given 
observation graph.  For stability of the fleet, existence of 
unstable fixed modes is important.  A fleet can be formation 
stabilized with a decentralized dynamic linear time-invariant 
(LTI) controller if it does not have any unstable fixed modes, 
and if there exists a linear dynamic LTI controller such that all 
eigenvalues are placed in the open left half plane (OLHP).  
Unfortunately, this analysis method was developed using a 
simple model (i.e., a particle) for each vehicle.  Although it 
provides a great insight to the formation control problem, it 
does not mention some practical issues.  For example, vehicles 
are usually modeled as a six-degree-of-freedom system defined 
in a body-fixed coordinate system, and a position of a vehicle is 
determined only through coordinate transformations.  
Moreover, if there are multiple vehicles, there would be 
multiple body-fixed coordinates and inertial coordinates.  
Difficulties arise when we have to consider these coordinates 
together.     
 
The main objective of formation flying is that all vehicles keep 
a prescribed distance to their neighbors (or a leader) and move 
in a common direction.  This condition can be realized as an 
operating condition of the fleet, and this can be viewed as a 
regulation problem.  In this problem setting, the system 
theoretic approaches for a fleet may be applicable.  In this 
paper, we consider a leader-follower system assuming that the 
followers measure a distance to the leader continuously.   
 
First we derive linear equations for the leader.  The nonlinear 6 
DOF model is linearized for a straight line trajectory to obtain 
the following linear model 
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Note that the vehicle equations might have more than six 
equations to perform specific tasks (such as trajectory 
following). 
A follower has more states than the leader because followers 
regulate formation errors as well.  The nonlinear 6 DOF model 
of the ith follower is also linearized for a straight line trajectory 
to obtain the following linear model 
 

iiiii µBξAξ +=  (6) 
 
Now define a vehicle separation vector as d0i. 
 

ii ddd −= 00  (7) 
where  

d0 is a position of the leader.   
di is a position of the follower. 

In the follower’s view point, the separation vector changes as 
 

irvivii dxxxRd 0000 ×−−′=  (8) 
 
where  

xvi and xv0 are the follower and the leader’s 
translational velocity in the follower’s body-fixed 
coordinates.  
xv0’ is the leader’s translational velocity in the leader’s 
body-fixed coordinates.  
xr is the follower’s rotational velocity. 
R0i is a coordinate transformation matrix from the 
leader to the follower’s coordinates. 

Note that the transformation matrix is necessary since the 
leader’s velocity is defined with respect to its body-fixed 
coordinates. 
 
Now we convert d0i to a deviation variable and define it as a 
formation error, e0i. 
 

iii dde 000 −=  (9) 
 
where  d0i is a desired nominal distance between the vehicles. 
Taking a time derivative and substituting it to Eq. (8) yields 
 

( )iirvivii dexxxRe 00000 +×−−′=  (10) 
 
Relationship between vehicles can be described in a similar 
way.  However, if the vehicles move in formation, the cross 
product goes away, and the rotational matrix becomes the 
identity matrix.  This is because the local frames are parallel.  
Hence the equation is simplified to the following simple linear 
relationship of their translational velocities 
 

vivi xxe −= 00  (11) 
 
As long as the vehicles’ orientation is approximately the same, 
this simplification may be valid.  Then the state equation for the 
ith follower is 
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(12) 

 
which can be written in the following compact form 
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where 
 

[ ]0ID −=  and   [ 0IE = ]
 
 

III. STABILITY OF A LEADER-FOLLOWER SYSTEM 
Using the models developed in the previous section, we 

investigate the stability of an n-vehicle leader-follower system.  
The n-vehicle leader-follower system can be written as  
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Notice that F matrix is in lower block triangular form, and G 
and H matrices are in block diagonal form.  In other words, the 
plant is in input-output LBT (lower block triangular) form [11].  
For a plant in this form, stability of the overall system is 
determined by stability of subsystems.  Also, a decentralized 
controller may be designed one by one by neglecting the off 
diagonal elements.  For instance, a decentralized linear 
quadratic Gaussian (LQG) regulator, which is able to tolerate 
nonlinear coupling and other disturbances, may be designed 
[11].  This property makes the leader-follower system a 
preferred system in practice especially if an advanced controller 
is required for controlling each vehicle.   
We assume that the leader measures all of its states (i.e., C01 = 
I), and the followers measure all of its states and distance to the 
leader (i.e., Ci1 = Ci2 = I).  The following controller is used for 
the leader  
 

000 yKµ =  (15) 
 
and the following controller is used for the ith follower. 
 

iii yKµ =  (16) 
 
where 
 

[ ]21 iii KKK =  
 
Closed-loop equation for this system is 
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Because Fc matrix of the closed loop equation is in block lower 
triangular form, eigenvalues of overall system are a union of 
eigenvalues of subsystems.  Hence stability of the fleet can be 
established if each vehicle can be stabilized.  Moreover, since 
we assumed that each vehicle was controllable and observable, 
the fleet can be stabilized with proper feedback controllers.  
This result is not surprising because some leader-follower 
controllers have been designed successfully without formal 
analysis (for example [3, 8]).   

This result can also be concluded in terms of fixed modes ([9], 
[10]).  The n-vehicle leader-follower system has a fixed mode, 
λi, if the following condition is satisfied. 
 

( ) 0=− ci FIλdet  (18) 
 
The fleet can be formation stabilized if all fixed modes are in 
OLHP.  Because the closed loop system matrix is in block 
lower triangular form, Eq. (18) can be written as 
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which indicates that fixed modes of the system are a union of 
uncontrollable and unobservable modes of each vehicle.  
Therefore, this system obviously has no fixed modes, and the 
fleet can be formation stabilized.  Another observation is that 
when the followers become incapable of measuring the distance 
to the leader, the fleet would have multiple eigenvalues at the 
origin.  In other words, the formation becomes marginally 
stable.  This can easily be seen by substituting Ci2 matrix with 
the zero matrices. 
 
 
IV. EXAMPLE: A HYBRID LEADER-FOLLOWER 
ALGORITHM 

We consider a hybrid leader-follower algorithm introduced 
in [3].  This algorithm is developed for a fleet of autonomous 
underwater vehicles (AUVs) searching for underwater mines.  
In this algorithm it is assumed that all vehicles know their 
inertial position, and the leader broadcasts its inertial position 
to the followers.  Only communication required for formation 
flying is the position of the leader.  Each vehicle follows a 
given search trajectory (or path), and the followers adjust their 
velocity to maintain a prescribed distance to the leader. 
In this example, a 3 DOF model of a REMUS given in [8] is 
adapted.  A linear state space model of the vehicle is given in 
Eq. (19). 
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(19) 

 
 where 
 u and v are forward and lateral velocities of the vehicle 

in m/sec defined in body fixed coordinates. 
 r is yaw rate in rad/sec. 
 ψ is yaw angle in rad.  
 uprop is a propeller thrust force in N 
 δr is a rudder angle in rad 
The operating condition, xo, is xo = [1.5 0 0 0]. 
Now we define a deviation of heading from a search path, , 
as 

θ

 
βψθ −=  (20) 
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where β is an angle of the path with respect to the inertial 
coordinates (see Fig. 1). 
We take a time derivative of Eq. (20) and obtain 
 

rθ =  (21) 
 
where β was assumed to be constant. 
A kinematic equation for the perpendicular distance from the 
path, d⊥, is defined as 
 

θcosvθsinud +=⊥  (22) 
 
Linearizing Eq. (22) at the previously defined operating point 
yields 
 

θ.vd 51+=⊥  (23) 
 
Augmenting Eq. (21) and Eq. (23) with Eq. (19) yields a state 
space model for the leader. 
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We denote Eq. (24) compactly as 
 

000 µBξAξ +=  (25) 
 
Equation for the formation error is added to Eq. (24) to obtain a 
follower model given in Eq. (26). 
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Note that only the x-component of the formation error was 
augmented. 
Equation (26) is written compactly as 
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where ξi = [ui vi ri θi d⊥i]T, µi = [uprop,i δr,i]T, D = [-1 0 0 0 0], and 
E = [1 0 0 0 0]. 
 
Decentralized LQR Design 
Assuming that each vehicle is able to measure all local states, a 
linear quadratic regulator (LQR) is designed for each vehicle 
separately.   
The LQ control law for the leader is 
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where P0 is a positive definite solution of the algebraic 
control Riccati equation 
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The control law given in Eq. (28) minimizes a quadratic cost 
function 
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For the follower, we will ignore the coupling term, Eξ0, and 
design an LQR for Eq. (27) to minimize a cost function, 
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The solution to this LQR problem is 
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Figure 1: A Hybrid Leader-Follower Algorithm
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where Pi is a positive definite solution of the algebraic 
control Riccati equation 
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Simulation Result 
In this section, we will perform a simulation with three 
vehicles: a leader and two followers.  In order to see usefulness 
and effectiveness of the design methodology, a nonlinear 3 
DOF model was used for each vehicle.  Because each vehicle 
has a trajectory to follow, formation flying is accomplished if 
the followers maintain a prescribed forward distance to the 
leader.  The desired distance was set to 10m in xi-direction for 
this example while the trajectories were separated by 40m.  
Figure 2 shows the vehicle trajectories (Triangles) and search 
paths (Dashed lines).  Although the vehicles were initially 
placed at random position and orientation, they converged to 
their assigned search trajectory and maintained prescribed 
distance to the leader.  Figure 3 shows formation errors.  
(Positive error means a follower is behind the desired position 
and vise versa.)  The simulation result indicates that the 
assumptions are valid, and the controller design methodology is 
simple, robust, and efficient.  Even if the followers lose 
communication with the leader, the followers would still follow 
the trajectory since the coupling only causes their velocity to 
change. 
 

 

 
     
V. CONCLUSION 

In this paper, a formation control problem was formulated 
into a formation regulation problem, and a design methodology 
of a simple and robust decentralized control for a fleet of 
vehicles was introduced.  Stability of the system was shown in 
terms of existence of unstable fixed modes.  It was shown that 
the stability of the n-vehicle leader-follower system was 
achieved by stabilizing each vehicle separately.  This property 
would allow control engineers to design an advanced controller 
for higher performances.  As an example, a hybrid leader-
follower system was designed.  Simulation results showed that 
the design and analysis methods are valid and useful. 
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